is a constant. The equation gives excellent checks for the three alcohols at  $20^{\circ}$  and  $25^{\circ}$  C. (Table III).

### **REFRACTIVITY INTERCEPTS**

The method of plotting refractivity intercept,  $n_{\rm D} - d/2$ , vs. the composition of binary solutions, suggested by Kurtz (8) and presented by Rouleau and Thompson in the preceding article, was applied to the present data as plotted in Figure 4.

Once again extremely interesting correlations resulted. The lines for all three alcohols were reasonably straight; the lines for n-propyl alcohol and isopropyl alcohol were coincident but methyl alcohol gave a line with a different slope.



Figure 4. Refractivity intercepts for aqueous alcohol solutions at 25° C.

Table III. Applicability of Eykman Equation

|                                                         | Value of $C_1$               |                              |  |  |
|---------------------------------------------------------|------------------------------|------------------------------|--|--|
| Compound                                                | at 20° C.                    | at 25° C.                    |  |  |
| n-Propyl alcohol<br>Isopropyl alcohol<br>Methyl alcohol | $0.6405 \\ 0.6425 \\ 0.5594$ | $0.6406 \\ 0.6424 \\ 0.5593$ |  |  |

The results are very encouraging and indicate that this method of correlation might shed some light on the effect of molecular structure and association on these physical properties.

#### LITERATURE CITED

- Brunel, R.F., Crenshaw, J.L., Tobin, E., J. Am. Chem. Soc. 43, 561 (1921).
- (2) Chiao, T.T., Thompson, A.R., Anal. Chem. 29, 1678 (1957).
- (3) Chiao, T.T., Thompson, A.R., J. Chem. Eng. Data 6, 192 (1961).
- (4) Chu, K.Y., Thompson, A.R., J. CHEM. ENG. DATA 5, 147 (1960).
- (5) Dreisbach, R.R., Ind. Eng. Chem. 40, 2269 (1948).
- (6) Griffith, V.S., J. Chem. Soc. (London) 1954, 860-2.
- (7) "International Critical Tables," McGraw-Hill, New York, 1933.
- (8) Kurtz, S.S., private communication, December 1961.
  (9) Lange, N.A., "Handbook of Chemistry," 9th ed., Handbook
- (b) Lange, N.A., Handbook of Chemistry, "5th ed., Handbook Publ., Sandusky, Ohio, 1956.
  (10) Perry, J.H., "Chemical Engineer's Handbook," 3rd ed.,
- (10) Perry, J.H., "Chemical Engineer's Handbook," 3rd ed., McGraw-Hill, New York, 1950.

RECEIVED for review September 18, 1961. Accepted February 12, 1962. Work supported by a grant from the Division of Engineering Research and Development of the University of Rhode Island.

# Vapor-Liquid Equilibrium at Atmospheric

# Pressure for the Ternary System,

# Methyl Acetate-Chloroform-Benzene

### ISAMU NAGATA<sup>1</sup>

Department of Chemical Engineering, Kyoto University, Kyoto, Japan

VAPOR-LIQUID EQUILIBRIUM data on the ternary methyl acetate-chloroform-benzene system were determined because available data indicated that this system was totally miscible and could be analyzed by density and refractive index measurements. This investigation also examined whether the experimental data can be well correlated by two typical methods existing in the literature, and whether ternary effects are present, since this system involves both positive and negative deviations from Raoult's law.

## PURITY OF COMPOUNDS

First grade (Japanese industrial standards) chloroform was fractionated in a glass column packed with McMahon

<sup>1</sup> Present address, Kanazawa University, Kanazawa, Japan

packings, and a heart cut was used for experimental work. First grade methyl acetate was purified by the procedure of Hurd and Strong (8). Special grade (Japanese industrial standards) benzene was purified by fractional crystallization repeated twice. The physical properties of the purified materials are compared with the literature values in Table I.

### ANALYTICAL METHOD

The vapor and liquid compositions of the methyl aceta  $\sigma$ chloroform-benzene mixtures can be easily determined by density and refractive index measurements. Uncertainty of  $\pm 0.0001$  in density and refractive index means an uncertainty of 0.001 in the values of mole fraction of compositions of components. Refractive index measurements were made using a Shimadzu Pulfrich refractometer with prism thermostated at  $25^{\circ} \pm 0.1^{\circ}$  C. for monochromatic light of a sodium lamp. Values were reproducible within  $\pm 0.0001$ .

Density determinations were made using 10-ml. pycnometers suspended in a thermostat controlled at  $25^{\circ} \pm 0.1^{\circ}$  C. and were reproducible within  $\pm 0.0001$ .

The binary mixtures were analyzed by a calibration chart of physical properties vs. compositions made on the known mixtures once the density or refractive index measurement was made. The compositions of binary systems determined by these two measurements did not differ by more than 0.001 mole fraction. The ternary calibration mixtures were prepared by adding benzene to nine mixtures of chloroform and methyl acetate of known composition. The densities and refractive indices of the resulting mixtures were determined. These properties of the binary and ternary mixtures are listed in Table II. The properties were plotted against mole fraction of benzene with compositions of methyl acetate on a benzene-free basis. By linear interpolation, smoothed ternary standard calibration data were obtained for isometric values of properties. These data were used to construct a ternary calibration chart as shown in Figure 1.



Figure 1. Lines of constant density and refractive

index for the ternary system

#### **APPARATUS**

The experimental determination of vapor-liquid equilibria was carried out in a Colburn vapor-recirculating still like that of Griswold and Buford (6). Equilibrium temperatures were measured by a copper-constantan thermocouple which was calibrated against a standard thermometer and connected with a Yokogawa P-7 potentiometer. The precision of temperature measurements was within  $\pm 0.05^{\circ}$  C. Since barometric pressure changed slightly, observed boiling temperatures were corrected to normal boiling points by the following equation (15).

$$t_c = t_a + 0.000 \ 12(t_a + 273.2)(760 - P)$$

$$t_c = \text{corrected temperature, } \circ \text{C}.$$

$$t_{\circ}$$
 = observed temperature, ° C

P = barometric pressure, mm. of mercury

# VAPOR-LIQUID EQUILIBRIUM DATA

The activity coefficients of component i,  $\gamma_i$ , were calculated by the equation

$$\pi y_i = \gamma_i x_i P_i \tag{1}$$

where  $\pi$  is the total pressure equal to 760 mm. of mercury.  $P_i$  is the vapor pressure of pure component i as the temperature of the system. The vapor pressure data for benzene were calculated using the Antoine equation given by Lange (11).

$$\log_{10} P_{\rm mm, Hg} = 6.90565 - 1211.033 / (t \circ C. + 220.790)$$

The vapor pressure data for chloroform and methyl acetate were taken from the compilation of Timmermans (18).

**Binary Systems.** The correct form of the Gibbs-Duhem equation for isobaric binary systems was derived by Ibl and Dodge (9) to be

$$x_1 \frac{\mathrm{dln}\gamma_1}{\mathrm{d}x_1} + x_2 \frac{\mathrm{dln}\gamma_2}{\mathrm{d}x_1} = - \frac{\Delta H}{RT^2} \left(\frac{\mathrm{d}T}{\mathrm{d}x_1}\right)_{\rho}$$
(2)

where  $\Delta H$  is the integral heat of mixing per mole. Hence, the usual area condition was modified by Chao (3) to be

$$\int_{2}^{1} \ln \frac{\gamma_{1}}{\gamma_{2}} dx_{1} = \int_{2}^{1} \frac{\Delta H}{RT^{2}} \left( \frac{dT}{dx_{1}} \right)_{p} dx_{1} = a$$
(3)

The value of a is not zero for systems showing a wide boiling point range and considerable heat of solution. However, in an azeotropic system a tends to vanish, since the sign of the slope  $(dT/dx_1)_p$  changes as the composition goes through the azeotropic point.

At constant pressure the excess free energy may be expressed as the same functional form of equation originally developed by Redlich and Kister (4).

$$G^{E} = RTx_{1}x_{2}[B + C(x_{1} - x_{2}) + D(x_{1} - x_{2})^{2} + ...]$$
(4)

Since the experimental evaluation of  $(\Delta H/RT^2)(dT/dx_1)_p$ is difficult, Chao (3) included the effect of  $(\Delta H/RT^2)(dT/dx_1)_p$  in the empirical equation for the ratio of activity coefficients as a series function of compositions. He proposed the following modified Redlich and Kister equation, allowing the requirements of Equation 3

$$\ln \gamma_1/\gamma_2 = a + b(x_2 - x_1)$$

$$+ c(6x_1x_2 - 1) + d(x_2 - x_1)(1 - 8x_1x_2) + \dots$$
 (5)

Combination of Equations 4 and 5 gives the activity coefficients of the individual components. Thus,

$$\ln \gamma_1 = x_1 \mathbf{x}_2 \left[ B + C(x_1 - x_2) + D(x_1 - x_2)^2 + \dots \right]$$

+ 
$$x_2[a + b(x_2 - x_1) + c(6x_1x_2 - 1)$$
  
+  $d(x_2 - x_1)(1 - 8x_1x_2) + \dots]$  (6a)

$$\ln \gamma_2 = x_1 x_2 [B + C(x_1 - x_2) + D(x_1 - x_2)^2 + \dots] - x_1 [a + b(x_2 - x_1) + c(6x_1 x_2 - 1) + d(x_2 - x_1)(1 - 8x_1 x_2) + \dots]$$
(6b)

The coefficients a, b, c, d, B, C, and D, if terms above d and D are neglected, must satisfy the following relation, because the value of  $(\Delta H/RT^2) (dT/dx_1)_p$  becomes zero at the limiting concentrations  $(x_1 \rightarrow 1 \text{ and } x_2 \rightarrow 1)$  (14).

$$\begin{cases} -a + (B-b) - (C-c) + (D-d) = 0\\ -a - (B-b) - (C-c) - (D-d) = 0 \end{cases}$$
(7)

As shown in Table III, the component binary systems involve a, b, c, B, and C. So Equation 7 is solved as

|                |         | Table I. Physical P     | roperties of Pure | Compounds Used          |                        |                                           |
|----------------|---------|-------------------------|-------------------|-------------------------|------------------------|-------------------------------------------|
|                | Boiling | g Point, ° C.           | Densi             | ty, 25/4                | Refractive I           | Index, $D/25$                             |
| Compound       | Exptl.  | Lit.                    | Exptl.            | Lit.                    | Exptl.                 | Lit.                                      |
| Methyl acetate | 56.8    | 56.8(2)                 | 0.9273            | 0.9273(18)              | 1.3589<br>1.3615(p/20) | 1.3614(2)                                 |
| Chloroform     | 61.2    | 61.26(10)<br>61.152(18) | 1.4802            | 1.4787(10)<br>1.4807(1) | 1.4433                 | 1.4430( <i>10</i> )<br>1.4433( <i>1</i> ) |
| Benzene        | 80.1    | 80.1(4)                 | 0.8739            | 0.8736(4)<br>0.8738(18) | 1.4979                 | 1.4980(4)                                 |

# Table II. Data for Analysis of the System Methyl Acetate–Chloroform–Benzene

| Methyl<br>Acetate                                                                 | Benzene                                                                       | Density                                                                                | Refractive<br>Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methyl<br>Acetate                                                            | Benzene                                                                           | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Refractive<br>Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.923<br>0.872<br>0.798<br>0.714                                                  | $\begin{array}{c} 0.077 \\ 0.128 \\ 0.202 \\ 0.286 \\ 0.520 \end{array}$      | 0.9218<br>0.9181<br>0.9131<br>0.9081                                                   | $\begin{array}{c} 1.3698 \\ 1.3769 \\ 1.3879 \\ 1.3997 \\ 1.0007 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.267 \\ 0.201 \\ 0.133 \\ 0.051 \end{array}$              | 0.588<br>0.690<br>0.795<br>0.921                                                  | 0.9675<br>0.9429<br>0.9198<br>0.8913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1.4538 \\ 1.4647 \\ 1.4760 \\ 1.4896 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.647<br>0.547<br>0.448<br>0.343<br>0.298<br>0.190                                | $0.353 \\ 0.453 \\ 0.552 \\ 0.657 \\ 0.702 \\ 0.810$                          | 0.9041<br>0.8986<br>0.8920<br>0.8881<br>0.8861<br>0.8814                               | 1.4094<br>1.4236<br>1.4372<br>1.4517<br>1.4578<br>1.4723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.550 \\ 0.504 \\ 0.483 \\ 0.418 \\ 0.346 \end{array}$     | $\begin{array}{c} 0 \\ 0.084 \\ 0.122 \\ 0.240 \\ 0.376 \end{array}$              | $\begin{array}{c} 1.1753 \\ 1.1465 \\ 1.1329 \\ 1.0952 \\ 1.0519 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.3964 \\ 1.4052 \\ 1.4091 \\ 1.4216 \\ 1.4355 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0<br>0<br>0<br>0<br>0                                                             | 0.832<br>0.770<br>0.679<br>0.572<br>0.480                                     | 0.9669<br>1.0016<br>1.0538<br>1.1164<br>1.1719                                         | 1.4891<br>1.4857<br>1.4806<br>1.4748<br>1.4696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.287 \\ 0.233 \\ 0.171 \\ 0.125 \\ 0.065 \end{array}$     | $0.478 \\ 0.576 \\ 0.689 \\ 0.773 \\ 0.882$                                       | $\begin{array}{c} 1.0205 \\ 0.9915 \\ 0.9586 \\ 0.9352 \\ 0.9057 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.4461 \\ 1.4560 \\ 1.4677 \\ 1.4758 \\ 1.4867$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                   | 0.366<br>0.267<br>0.165<br>0.083                                              | 1.2419<br>1.3040<br>1.3695<br>1.4240                                                   | $1.4636 \\ 1.4581 \\ 1.4525 \\ 1.4481 \\ 1.2574$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.460 \\ 0.424 \\ 0.378 \\ 0.331 \\ 0.283$                                  | $0\\0.078\\0.179\\0.280\\0.384$                                                   | $1.2256 \\ 1.1949 \\ 1.1554 \\ 1.1173 \\ 1.0797$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.4042 \\ 1.4116 \\ 1.4215 \\ 1.4312 \\ 1.4409$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} 0.898 \\ 0.827 \\ 0.752 \\ 0.644 \\ 0.554 \\ 0.478 \end{array}$ | $\begin{array}{c} 0 \\ 0.078 \\ 0.192 \\ 0.283 \\ 0.383 \\ 0.468 \end{array}$ | $\begin{array}{c} 0.9826\\ 0.9729\\ 0.9583\\ 0.9473\\ 0.9358\\ 0.9262\end{array}$      | $1.3674 \\ 1.3779 \\ 1.3933 \\ 1.4054 \\ 1.4188 \\ 1.4302$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.238\\ 0.197\\ 0.144\\ 0.102\\ 0.049\end{array}$          | 0.483<br>0.572<br>0.688<br>0.778<br>0.893                                         | 1.0453<br>1.0133<br>0.9744<br>0.9445<br>0.9079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.4503 \\ 1.4587 \\ 1.4694 \\ 1.4779 \\ 1.4885$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.380<br>0.283<br>0.175<br>0.068                                                  | 0.577<br>0.685<br>0.805<br>0.925                                              | 0.9148<br>0.9035<br>0.8918<br>0.8810                                                   | $1.4442 \\ 1.4581 \\ 1.4735 \\ 1.4886 \\ 1.2750$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.352 \\ 0.324 \\ 0.284 \\ 0.249 \\ 0.220 \end{array}$     | 0<br>0.079<br>0.193<br>0.292<br>0.376                                             | $\begin{array}{c} 1.2855 \\ 1.2489 \\ 1.1976 \\ 1.1538 \\ 1.1183 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.4136 \\ 1.4204 \\ 1.4301 \\ 1.4387 \\ 1.4460$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.803<br>0.753<br>0.658<br>0.582<br>0.508<br>0.416                                | $\begin{array}{c} 0\\ 0.062\\ 0.180\\ 0.275\\ 0.367\\ 0.483\end{array}$       | $     1.0355 \\     1.0240 \\     1.0019 \\     0.9851 \\     0.9693 \\     0.9503   $ | $1.3752 \\ 1.3828 \\ 1.3981 \\ 1.4099 \\ 1.4211 \\ 1.4357$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.188\\ 0.151\\ 0.114\\ 0.079\\ 0.034\end{array}$          | 0.466<br>0.572<br>0.675<br>0.774<br>0.903                                         | 1.0804<br>1.0367<br>0.9964<br>0.9579<br>0.9097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.4537 \\ 1.4626 \\ 1.4714 \\ 1.4795 \\ 1.4905$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.333<br>0.253<br>0.175<br>0.058                                                  | 0.586<br>0.685<br>0.783<br>0.927                                              | 0.9344<br>0.9191<br>0.9046<br>0.8842                                                   | 1.4482<br>1.4603<br>1.4721<br>1.4895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.233<br>0.216<br>0.190<br>0.169                                             | 0<br>0.075<br>0.184<br>0.275                                                      | $1.3518 \\ 1.3119 \\ 1.2545 \\ 1.2076 \\ 1.2076 \\ 1.2076 \\ 1.2076 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1.2077 \\ 1$ | $1.4237 \\ 1.4296 \\ 1.4378 \\ 1.4447 \\ 1.4447 \\ 1.4427 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.4447 \\ 1.447 \\ 1.4447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.447 \\ 1.44$ |
| 0.754<br>0.680<br>0.586<br>0.549<br>0.466<br>0.395                                | $\begin{array}{c} 0 \\ 0.098 \\ 0.188 \\ 0.271 \\ 0.382 \\ 0.476 \end{array}$ | $     1.0629 \\     1.0423 \\     1.0223 \\     1.0054 \\     0.9834 \\     0.9650 $   | $\begin{array}{c} 1.3792 \\ 1.3906 \\ 1.4022 \\ 1.4123 \\ 1.4256 \\ 1.4372 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.133<br>0.123<br>0.086<br>0.072<br>0.046<br>0.022                           | $\begin{array}{c} 0.431 \\ 0.473 \\ 0.630 \\ 0.691 \\ 0.802 \\ 0.907 \end{array}$ | $     1.1307 \\     1.1107 \\     1.0368 \\     1.0091 \\     0.9591 \\     0.9137 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.4564 \\ 1.4595 \\ 1.4712 \\ 1.4756 \\ 1.4838 \\ 1.4917$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.330<br>0.320<br>0.240<br>0.157<br>0.076                                         | 0.575<br>0.681<br>0.792<br>0.899                                              | 0.9468<br>0.9274<br>0.9084<br>0.8903                                                   | $1.4372 \\ 1.4489 \\ 1.4615 \\ 1.4715 \\ 1.4867 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1.9272 \\ 1$ | 0.121<br>0.110<br>0.097<br>0.087                                             | .0<br>0.086<br>0.193<br>0.277                                                     | $\begin{array}{c} 1.4140 \\ 1.3629 \\ 1.2990 \\ 1.2510 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.4333 \\ 1.4389 \\ 1.4460 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1.4515 \\ 1$                    |
| $\begin{array}{c} 0.648 \\ 0.582 \\ 0.533 \\ 0.460 \\ 0.402 \\ 0.341 \end{array}$ | $\begin{array}{c} 0 \\ 0.102 \\ 0.178 \\ 0.291 \\ 0.380 \\ 0.474 \end{array}$ | 1.12091.09251.07141.04121.01840.9947                                                   | $1.3878 \\ 1.3994 \\ 1.4080 \\ 1.4210 \\ 1.4207 \\ 1.4412$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.077\\ 0.063\\ 0.051\\ 0.038\\ 0.027\\ 0.012 \end{array}$ | $0.366 \\ 0.478 \\ 0.576 \\ 0.689 \\ 0.775 \\ 0.905$                              | $1.2014 \\ 1.1398 \\ 1.0867 \\ 1.0286 \\ 0.9843 \\ 0.9265$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.4572 \\ 1.4644 \\ 1.4708 \\ 1.4780 \\ 1.4837 \\ 1.4920$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Table III. Constants Used in Expressing Activity Coefficients

| System                          | $oldsymbol{a}_{ii}$ | $m{b}_{ij}$ | $c_{ij}$ | $oldsymbol{B}_{ij}$ | $oldsymbol{C}_{ii}$ |
|---------------------------------|---------------------|-------------|----------|---------------------|---------------------|
| Methyl acetate(1)-chloroform(2) | 0                   | -0.2735     | 0.0409   | -0.2735             | 0.0409              |
| Chloroform(2)-benzene(3)        | 0                   | -0.0955     | 0.0143   | -0.0955             | 0.0143              |
| Benzene(3)-methyl acetate(1)    | 0.0308              | 0.1245      | 0.0183   | 0.1245              | -0.0125             |

$$\begin{cases} B = b\\ C = c - a \end{cases}$$
(8)

In the actual numerical calculation logarithms were based on 10.

The vapor-liquid equilibrium data for the methyl acetate-chloroform system forming a maximum boiling azeotrope were reported by Bushmakin and Kish (2) in 1957. The present data obtained here are in close agreement with theirs. The chloroform-benzene system was determined by Reinders and de Minjer (17) in 1940. The x-y data agree well with their data, but the boiling point data are slightly lower than their data (a maximum deviation of  $0.5^{\circ}$  C.). This system shows small negative deviations from ideality. The end values of activity coefficients used are the same as those determined by Edwards, Hashmall, Gilmont, and Othmer (5).

The data on the methyl acetate-benzene system are not reported in the existing literature. This system indicates positive deviations from ideal solution.

The experimental data are listed in Tables IV, V, and VI for the three binaries.

**Ternary System**. An extension of Equation 2 to the ternary system under isobaric conditions gives

$$x_1 \operatorname{dln} \gamma_1 + x_2 \operatorname{dln} \gamma_2 + x_3 \operatorname{dln} \gamma_3 = - \frac{\Delta H}{RT^2} \, \mathrm{d}T \tag{9}$$

The excess free energy  $G_{123}^{E}$  for the ternary system is expressed as follows,

$$G_{123}^{E} = G_{12}^{E} + G_{23}^{E} + G_{31}^{E} + RTx_{1}x_{2}x_{3}[B + C_{1}(x_{2} - x_{2}) + C_{2}(x_{3} - x_{1}) + C_{2}(x_{1} - x_{2}) + \dots]$$
(10)

where the first three terms on the right side represent contributions by the individual binaries, and the last term represents ternary effects. Equation 4 gives  $G^{E}$ 's for binaries.

Standard procedures for deriving thermodynamic relations allow one to obtain expressions of activity coefficients and their ratios. The difficulties with the  $(\Delta H/RT^2) \times$  $(\partial T/\partial x)_p$  term are circumvented by modifying the constants as done with the binary system (4). The author suggests the following equation

$$\ln \gamma_{1} / \gamma_{2} = a_{12} - b_{12}(x_{1} - x_{2}) + c_{12} [2x_{1}x_{2} - (x_{1} - x_{2})^{2}] + \dots$$

$$+ x_{3} \{ b_{31} - b_{23} - c_{23}(2x_{2} - x_{3}) + c_{31}(x_{3} - 2x_{1}) - b((x_{1} - x_{2}) - c_{1}[x_{1}(2x_{2} - x_{3}) + x_{2}(x_{3} - x_{2})] - c_{2}[x_{1}(2x_{2} - x_{1})] + x_{3}(x_{1} - x_{2})] + c_{3}[2x_{1}x_{2} - (x_{1} - x_{2})^{2}] + \dots \}$$
(11)

This equation including  $a_{12}$  term on the right side is different from that in the original article by Chao and

Table IV. Experimental Vapor-Liquid Equilibrium Data for Methyl Acetate(I)–Chloroform(2)

|                                                                                                            |                                                                                                                                                     | • • •                                                                                                                                                |                                                                                                                                                     | ,                                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                            | Mole F                                                                                                                                              | action of                                                                                                                                            | Activity Coeff.                                                                                                                                     |                                                                                                                                                     |  |
| Temp.,<br>°C.                                                                                              | Methyl<br>Liquid                                                                                                                                    | Acetate<br>Vapor                                                                                                                                     | Methyl<br>acetate                                                                                                                                   | Chloroform                                                                                                                                          |  |
| $58.1 \\ 59.2 \\ 60.3 \\ 61.4 \\ 62.4 \\ 63.2 \\ 64.2 \\ 64.7 \\ 64.6 \\ 64.2 \\ 63.7 \\ 63.5 \\ 62.2 \\ $ | $\begin{array}{c} 0.920\\ 0.851\\ 0.782\\ 0.706\\ 0.640\\ 0.563\\ 0.532\\ 0.463\\ 0.406\\ 0.335\\ 0.263\\ 0.224\\ 0.171\\ 0.159\\ 0.064\end{array}$ | $\begin{array}{c} 0.953\\ 0.907\\ 0.854\\ 0.791\\ 0.719\\ 0.631\\ 0.592\\ 0.502\\ 0.425\\ 0.327\\ 0.236\\ 0.191\\ 0.130\\ 0.117\\ 0.040 \end{array}$ | $\begin{array}{c} 0.992\\ 0.983\\ 0.971\\ 0.961\\ 0.932\\ 0.905\\ 0.884\\ 0.847\\ 0.804\\ 0.750\\ 0.692\\ 0.666\\ 0.604\\ 0.599\\ 0.532\end{array}$ | $\begin{array}{c} 0.650\\ 0.665\\ 0.688\\ 0.705\\ 0.750\\ 0.790\\ 0.803\\ 0.840\\ 0.864\\ 0.903\\ 0.925\\ 0.944\\ 0.967\\ 0.971\\ 0.992\end{array}$ |  |
|                                                                                                            |                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                     |  |

|                                                                              | Mole F                                                                                                      | raction of                                                                                                  | Activity Coeff.                                                                          |                                                                                                             |  |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| ° C.                                                                         | Methy:<br>Liquid                                                                                            | l Acetate<br>Vapor                                                                                          | Methyl<br>acetate                                                                        | Benzene                                                                                                     |  |  |
| 57.9<br>58.4<br>60.1<br>61.8<br>63.8<br>66.8<br>67.5<br>71.0<br>71.8<br>73.5 | $\begin{array}{c} 0.895\\ 0.863\\ 0.735\\ 0.620\\ 0.505\\ 0.362\\ 0.338\\ 0.212\\ 0.189\\ 0.139\end{array}$ | $\begin{array}{c} 0.933\\ 0.914\\ 0.832\\ 0.749\\ 0.665\\ 0.545\\ 0.528\\ 0.387\\ 0.356\\ 0.282\end{array}$ | $1.006 \\ 1.004 \\ 1.013 \\ 1.022 \\ 1.043 \\ 1.084 \\ 1.095 \\ 1.147 \\ 1.155 \\ 1.181$ | $\begin{array}{c} 1.335\\ 1.290\\ 1.226\\ 1.203\\ 1.151\\ 1.095\\ 1.069\\ 1.039\\ 1.033\\ 1.026\end{array}$ |  |  |
| 75.9<br>76.9                                                                 | $0.076 \\ 0.055$                                                                                            | $0.175 \\ 0.133$                                                                                            | $1.244 \\ 1.267$                                                                         | $\begin{array}{c} 1.018 \\ 1.025 \end{array}$                                                               |  |  |

Table VI. Experimental Vapor-Liquid Equilibrium Data for Chloroform(2)-Benzene(3)

| Temp.,                                                                                                                           | Mole F<br>Chlo                                                                                                                      | raction of<br>roform                                                                                                                | Activity Coefficients                                                                                                               |                                                                                                                                                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ° C.                                                                                                                             | Liquid                                                                                                                              | Vapor                                                                                                                               | Chloroform                                                                                                                          | Benzene                                                                                                                                          |  |  |
| $\begin{array}{c} 62.6\\ 64.1\\ 65.4\\ 67.0\\ 68.3\\ 69.7\\ 70.8\\ 71.6\\ 72.2\\ 73.3\\ 74.4\\ 74.7\\ 75.7\\ 75.7\\ \end{array}$ | $\begin{array}{c} 0.934\\ 0.853\\ 0.783\\ 0.700\\ 0.637\\ 0.570\\ 0.517\\ 0.467\\ 0.443\\ 0.388\\ 0.333\\ 0.318\\ 0.266\end{array}$ | $\begin{array}{c} 0.968\\ 0.922\\ 0.875\\ 0.814\\ 0.762\\ 0.702\\ 0.652\\ 0.601\\ 0.570\\ 0.508\\ 0.443\\ 0.429\\ 0.361\end{array}$ | $\begin{array}{c} 0.990\\ 0.983\\ 0.976\\ 0.965\\ 0.952\\ 0.938\\ 0.928\\ 0.924\\ 0.909\\ 0.894\\ 0.879\\ 0.883\\ 0.870\end{array}$ | $\begin{array}{c} 0.861 \\ 0.893 \\ 0.927 \\ 0.945 \\ 0.957 \\ 0.966 \\ 0.968 \\ 0.980 \\ 0.991 \\ 0.996 \\ 0.999 \\ 0.992 \\ 0.983 \end{array}$ |  |  |
| 76.2<br>76.9<br>77.9<br>78.4<br>79.0<br>79.2                                                                                     | $\begin{array}{c} 0.229 \\ 0.193 \\ 0.133 \\ 0.116 \\ 0.068 \\ 0.060 \end{array}$                                                   | $\begin{array}{c} 0.316 \\ 0.270 \\ 0.190 \\ 0.167 \\ 0.100 \\ 0.089 \end{array}$                                                   | $\begin{array}{c} 0.864 \\ 0.857 \\ 0.851 \\ 0.844 \\ 0.847 \\ 0.849 \end{array}$                                                   | 0.997<br>0.999<br>1.000<br>0.993<br>0.999<br>0.997                                                                                               |  |  |

Hougen (4). This comes from thermodynamic principle that the ternary equations must be consistent with component binary equations. At zero value of  $x_3$  Equation 11 reduces to Equation 5. The similar expressions for  $\ln \gamma_2/\gamma_3$  and  $\ln \gamma_3/\gamma_1$  are obtained by cyclic permutation of the subscripts in the order of 1, 2, 3, 1. Combining these equations for the ratio of activity coefficients and Equation 10 gives expression of activity coefficients of the individual components, thus

$$\ln \gamma_{1} = a_{12}x_{2} - a_{31}x_{3} + (G_{123}^{E}/RT) + [x_{2}(x_{2} + x_{3}) - x_{1}x_{2}]$$

$$[b_{12} + c_{12}(x_{1} - x_{2}) + \dots] - 2x_{2}x_{3}[b_{23} + c_{23}(x_{2} - x_{3}) + \dots]$$

$$+ [(x_{3} - x_{1})(x_{2} + x_{3}) + x_{1}x_{2}][b_{31} + c_{31}(x_{3} - x_{1}) + \dots]$$

$$+ [x_{3}x_{2}(x_{2} + x_{3}) + x_{1}x_{2}^{2}](c_{12} + \dots) + [x_{2}x_{3}(x_{2} + x_{3}) - 2x_{2}^{2}x_{3}]$$

$$(c_{23} + \dots) + [-2x_{3}x_{1}(x_{2} + x_{3}) + x_{1}x_{2}x_{3}](c_{31} + \dots)$$

$$+ [(x_{2} + x_{3})(x_{2}x_{3} - x_{1}x_{2}) - x_{2}(x_{1}x_{3} - x_{1}x_{2})] [b + c_{1}(x_{2} - x_{3})$$

$$+ c_{2}(x_{3} - x_{1}) + c_{3}(x_{1} - x_{2}) + \dots] + x_{1}x_{2}x_{3}[(x_{2} + x_{3})$$

$$(c_{1} - 2c_{2} + c_{3}) - x_{2}(2c_{1} - c_{2} - c_{3}) + \dots]$$
(12)

Similarly  $\ln \gamma_2$  and  $\ln \gamma_3$  are obtained by cyclic advancement of the subscripts.

The ternary vapor-liquid equilibrium data could be predicted from the binary constants only by neglecting the ternary constants in the modified Redlich and Kister equations. The ternary vapor-liquid equilibrium data are listed in Table VII and compared with calculated values. The average deviation between observed and calculated vapor compositions is 0.005, 0.006, and 0.007 for methyl acetate, chloroform, and benzene, respectively. The average

|           | #00U               | λ3             | 0.919          | 0.952<br>0.952<br>0.953                  | $\begin{array}{c} 0.965\\ 0.974\\ 0.990\\ 0.995\\ 0.995\end{array}$         | $\begin{array}{c} 1.000\\ 1.007\\ 1.006\\ 0.997\\ 0.982\end{array}$         | $\begin{array}{c} 1.003\\ 1.034\\ 1.003\\ 1.003\\ 1.003\\ 1.017\end{array}$ | $\begin{array}{c} 1.021 \\ 1.012 \\ 1.014 \\ 1.012 \\ 1.059 \end{array}$    | $\begin{array}{c} 1.046\\ 1.043\\ 1.042\\ 1.038\\ 1.036\\ 1.036\end{array}$ | $\begin{array}{c} 1.043\\ 1.039\\ 1.031\\ 1.031\\ 1.012\\ 1.012\end{array}$ | 1.084<br>1.095<br>1.095<br>1.087<br>1.072                                         | 1.050<br>1.063<br>1.054<br>1.054<br>1.054                                         |
|-----------|--------------------|----------------|----------------|------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|           | A of init.         |                | 0.986<br>0.973 | 0.955<br>0.959<br>0.952                  | $\begin{array}{c} 0.938\\ 0.919\\ 0.891\\ 0.871\\ 0.860\\ \end{array}$      | $\begin{array}{c} 0.840 \\ 0.814 \\ 0.781 \\ 0.974 \\ 0.974 \end{array}$    | $\begin{array}{c} 0.965\\ 0.955\\ 0.954\\ 0.953\\ 0.925\end{array}$         | $\begin{array}{c} 0.907\\ 0.873\\ 0.836\\ 0.836\\ 0.777\\ 0.941\end{array}$ | $\begin{array}{c} 0.935\\ 0.918\\ 0.902\\ 0.884\\ 0.900\end{array}$         | $\begin{array}{c} 0.881 \\ 0.818 \\ 0.795 \\ 0.758 \\ 0.747 \end{array}$    | $\begin{array}{c} 0.932 \\ 0.902 \\ 0.884 \\ 0.865 \\ 0.844 \\ 0.844 \end{array}$ | $\begin{array}{c} 0.831 \\ 0.804 \\ 0.780 \\ 0.740 \\ 0.710 \\ 0.710 \end{array}$ |
|           |                    |                | 0.601          | 0.728<br>0.732<br>0.735                  | 0.806<br>0.881<br>0.932<br>0.990<br>0.968                                   | 0.924<br>0.874<br>0.832<br>0.672<br>0.708                                   | $\begin{array}{c} 0.742 \\ 0.788 \\ 0.817 \\ 0.863 \\ 0.924 \end{array}$    | $\begin{array}{c} 0.957\\ 1.059\\ 1.112\\ 1.158\\ 0.722\end{array}$         | 0.737<br>0.778<br>0.813<br>0.855<br>0.820                                   | 0.860<br>0.977<br>1.030<br>1.099<br>1.127                                   | 0.749<br>0.794<br>0.825<br>0.857<br>0.898                                         | 0.952<br>0.964<br>1.004<br>1.041<br>1.084                                         |
|           | #00                | γ3<br>γ3       | 0.977<br>0.981 | 1.004<br>1.004                           | $\begin{array}{c} 1.015\\ 1.029\\ 1.031\\ 1.029\\ 1.015\end{array}$         | $\begin{array}{c} 1.019\\ 1.012\\ 1.020\\ 0.959\\ 1.032\end{array}$         | $\begin{array}{c} 1.040\\ 1.066\\ 1.007\\ 1.035\\ 1.034\end{array}$         | $\begin{array}{c} 1.056\\ 1.031\\ 1.033\\ 1.033\\ 0.903\end{array}$         | $\begin{array}{c} 1.045\\ 1.079\\ 1.085\\ 1.076\\ 1.083\end{array}$         | $\begin{array}{c} 1.072 \\ 1.062 \\ 1.056 \\ 1.059 \\ 1.046 \end{array}$    | $\begin{array}{c} 1.141 \\ 1.136 \\ 1.120 \\ 1.107 \\ 1.112 \end{array}$          | $\begin{array}{c} 1.074 \\ 1.091 \\ 1.080 \\ 1.079 \\ 1.059 \end{array}$          |
| :ne(3)    | A attrit           |                | 0.974<br>0.966 | 0.917<br>0.944<br>0.879                  | $\begin{array}{c} 0.911\\ 0.885\\ 0.865\\ 0.852\\ 0.845\\ 0.845\end{array}$ | 0.824<br>0.818<br>0.796<br>0.923<br>0.931                                   | 0.923<br>0.906<br>0.888<br>0.869<br>0.867                                   | 0.837<br>0.807<br>0.797<br>0.607<br>0.788                                   | 0.932<br>0.900<br>0.878<br>0.863<br>0.876                                   | 0.866<br>0.813<br>0.802<br>0.778<br>0.772                                   | $\begin{array}{c} 0.911 \\ 0.886 \\ 0.859 \\ 0.842 \\ 0.825 \\ 0.825 \end{array}$ | $\begin{array}{c} 0.812\\ 0.789\\ 0.783\\ 0.749\\ 0.749\end{array}$               |
| 2)-Benze  | Obod               |                | 0.566<br>0.558 | 0.701<br>0.687<br>0.770                  | 0.782<br>0.873<br>0.882<br>0.928<br>1.050                                   | $\begin{array}{c} 1.016\\ 1.243\\ 1.175\\ 0.640\\ 0.695\end{array}$         | 0.725<br>0.782<br>0.833<br>0.837<br>0.870                                   | $\begin{array}{c} 0.929\\ 1.004\\ 1.078\\ 1.181\\ 0.605\end{array}$         | 0.705<br>0.725<br>0.802<br>0.849<br>0.794                                   | $\begin{array}{c} 0.849\\ 0.953\\ 1.007\\ 1.029\\ 1.086\end{array}$         | $\begin{array}{c} 0.733\\ 0.782\\ 0.813\\ 0.857\\ 0.880\\ 0.880 \end{array}$      | 0.930<br>0.951<br>0.986<br>1.017<br>1.084                                         |
| oform()   | · · · ·            | p              | 63.5<br>65 0   | 66.7<br>67.1<br>67.7                     | 68.9<br>70.8<br>72.0<br>74.2                                                | 75.5<br>76.8<br>78.1<br>64.2<br>65.3                                        | 65.7<br>66.5<br>67.5<br>68.5<br>69.5                                        | 70.1<br>72.7<br>73.5<br>74.5<br>64.7                                        | 65.3<br>66.4<br>67.3<br>68.2<br>67.5                                        | 68.3<br>70.5<br>71.6<br>71.8<br>73.6                                        | 64.8<br>65.6<br>66.3<br>67.0<br>68.0                                              | 69.5<br>69.2<br>69.9<br>69.9                                                      |
| )–Chlor   | emp., °(           |                | 64.0<br>65.4   | 67.1<br>67.4<br>68.4                     | 69.1<br>70.8<br>71.5<br>72.6<br>73.7                                        | 74.6<br>75.8<br>76.6<br>65.0<br>66.2                                        | 66.7<br>67.3<br>68.5<br>69.6<br>70.2                                        | 70.7<br>72.7<br>73.2<br>73.8<br>65.3                                        | 65.8<br>66.8<br>67.5<br>68.4<br>68.1                                        | 68.4<br>70.1<br>71.1<br>71.3<br>72.6                                        | 65.5<br>65.9<br>66.5<br>67.1<br>68.0                                              | 69.3<br>68.9<br>69.5<br>69.9                                                      |
| cetate(]  | T of               | -909-          | 63.9<br>65 1   | 67.2<br>67.3<br>68.5                     | 69.1<br>70.9<br>71.8<br>72.9<br>73.8                                        | 74.9<br>75.7<br>76.6<br>64.8<br>66.3                                        | 66.7<br>67.4<br>68.7<br>69.9<br>70.6                                        | 70.9<br>73.3<br>73.6<br>74.2<br>65.3                                        | 65.7<br>66.7<br>67.6<br>68.4<br>67.9                                        | 68.4<br>70.5<br>71.4<br>71.8<br>73.1                                        | 65.5<br>66.0<br>66.8<br>67.3<br>68.2                                              | 69.7<br>69.2<br>69.8<br>69.8<br>70.3                                              |
| Methly A  | ٥r                 | $\mathbf{v}_3$ | 0.042          | 0.158<br>0.175<br>0.239                  | 0.260<br>0.358<br>0.417<br>0.491<br>0.563                                   | $\begin{array}{c} 0.641\\ 0.745\\ 0.843\\ 0.051\\ 0.112\end{array}$         | $\begin{array}{c} 0.130\\ 0.181\\ 0.225\\ 0.225\\ 0.285\\ 0.352\end{array}$ | $\begin{array}{c} 0.394\\ 0.545\\ 0.611\\ 0.696\\ 0.046\end{array}$         | $\begin{array}{c} 0.079\\ 0.134\\ 0.181\\ 0.181\\ 0.240\\ 0.193\end{array}$ | 0.244<br>0.408<br>0.494<br>0.548<br>0.647                                   | $\begin{array}{c} 0.054\\ 0.093\\ 0.135\\ 0.184\\ 0.254\end{array}$               | $\begin{array}{c} 0.351 \\ 0.354 \\ 0.421 \\ 0.465 \\ 0.539 \end{array}$          |
| Data for  | alcd. Vapo<br>Comm | V2             | 0.899<br>0.832 | 0.750<br>0.698<br>0.698                  | $\begin{array}{c} 0.657\\ 0.562\\ 0.478\\ 0.394\\ 0.342\end{array}$         | $\begin{array}{c} 0.271\\ 0.180\\ 0.083\\ 0.083\\ 0.817\\ 0.771\end{array}$ | 0.722<br>0.653<br>0.621<br>0.561<br>0.457                                   | $\begin{array}{c} 0.400\\ 0.268\\ 0.186\\ 0.083\\ 0.742\end{array}$         | $\begin{array}{c} 0.717\\ 0.652\\ 0.594\\ 0.528\\ 0.585\end{array}$         | $\begin{array}{c} 0.517\\ 0.313\\ 0.235\\ 0.144\\ 0.089\end{array}$         | $\begin{array}{c} 0.698\\ 0.616\\ 0.557\\ 0.496\\ 0.426\\ 0.426\end{array}$       | $\begin{array}{c} 0.358\\ 0.303\\ 0.232\\ 0.144\\ 0.073\end{array}$               |
| uilibrium | 0                  | <sup>۷</sup> 1 | 0.059<br>0.078 | 0.094<br>0.075<br>0.063                  | $\begin{array}{c} 0.083\\ 0.080\\ 0.105\\ 0.115\\ 0.095 \end{array}$        | $\begin{array}{c} 0.088\\ 0.075\\ 0.074\\ 0.132\\ 0.117\end{array}$         | $\begin{array}{c} 0.148\\ 0.166\\ 0.154\\ 0.154\\ 0.191\end{array}$         | $\begin{array}{c} 0.206\\ 0.187\\ 0.203\\ 0.221\\ 0.212\\ 0.212\end{array}$ | $\begin{array}{c} 0.204 \\ 0.214 \\ 0.225 \\ 0.232 \\ 0.222 \end{array}$    | $\begin{array}{c} 0.239\\ 0.279\\ 0.271\\ 0.308\\ 0.264\end{array}$         | $\begin{array}{c} 0.248\\ 0.291\\ 0.308\\ 0.320\\ 0.320\end{array}$               | $\begin{array}{c} 0.291\\ 0.343\\ 0.347\\ 0.391\\ 0.388\end{array}$               |
| iquid Eq  | )0T <sup>4</sup>   | <b>y</b>       | 0.048<br>0.097 | 0.168<br>0.185<br>0.233                  | $\begin{array}{c} 0.270\\ 0.365\\ 0.419\\ 0.494\\ 0.559\end{array}$         | $\begin{array}{c} 0.629\\ 0.723\\ 0.815\\ 0.057\\ 0.122\end{array}$         | $\begin{array}{c} 0.143\\ 0.195\\ 0.243\\ 0.307\\ 0.374\end{array}$         | $\begin{array}{c} 0.415\\ 0.560\\ 0.624\\ 0.707\\ 0.051\end{array}$         | $\begin{array}{c} 0.087\\ 0.146\\ 0.194\\ 0.254\\ 0.207\end{array}$         | $\begin{array}{c} 0.258\\ 0.420\\ 0.503\\ 0.563\\ 0.659\end{array}$         | $\begin{array}{c} 0.061\\ 0.103\\ 0.147\\ 0.197\\ 0.269\end{array}$               | $\begin{array}{c} 0.366\\ 0.369\\ 0.435\\ 0.481\\ 0.557\end{array}$               |
| Vapor-Li  | alcd. Var<br>Comm  |                | 0.893<br>0.823 | 0.735<br>0.738<br>0.698                  | 0.646<br>0.555<br>0.469<br>0.394<br>0.344                                   | $\begin{array}{c} 0.274 \\ 0.186 \\ 0.088 \\ 0.805 \\ 0.755 \end{array}$    | $\begin{array}{c} 0.701 \\ 0.630 \\ 0.597 \\ 0.534 \\ 0.432 \end{array}$    | $\begin{array}{c} 0.378\\ 0.259\\ 0.184\\ 0.085\\ 0.728\end{array}$         | 0.701<br>0.634<br>0.576<br>0.512<br>0.567                                   | $\begin{array}{c} 0.501 \\ 0.308 \\ 0.236 \\ 0.148 \\ 0.092 \end{array}$    | $\begin{array}{c} 0.680\\ 0.596\\ 0.537\\ 0.478\\ 0.411\\ 0.411 \end{array}$      | $\begin{array}{c} 0.349 \\ 0.296 \\ 0.229 \\ 0.144 \\ 0.075 \end{array}$          |
| Ternary   | 0                  | <sup>1</sup>   | 0.059<br>0.080 | 0.069700.0000000000000000000000000000000 | $\begin{array}{c} 0.084 \\ 0.080 \\ 0.112 \\ 0.112 \\ 0.097 \end{array}$    | 0.097<br>0.091<br>0.097<br>0.138<br>0.123                                   | 0.156<br>0.175<br>0.160<br>0.159<br>0.194                                   | $\begin{array}{c} 0.207 \\ 0.181 \\ 0.192 \\ 0.208 \\ 0.221 \end{array}$    | 0.212<br>0.220<br>0.230<br>0.234<br>0.226                                   | $\begin{array}{c} 0.241 \\ 0.272 \\ 0.261 \\ 0.289 \\ 0.249 \end{array}$    | $\begin{array}{c} 0.259\\ 0.301\\ 0.316\\ 0.325\\ 0.320\\ 0.320\end{array}$       | 0.285<br>0.335<br>0.336<br>0.375<br>0.368                                         |
| able VII. | por                | $\mathbf{y}_3$ | 0.045<br>0.093 | $0.179 \\ 0.185 \\ 0.239$                | 0.275<br>0.379<br>0.431<br>0.507<br>0.566                                   | 0.642<br>0.722<br>0.816<br>0.052<br>0.121                                   | $\begin{array}{c} 0.139\\ 0.192\\ 0.235\\ 0.309\\ 0.371\end{array}$         | $\begin{array}{c} 0.418\\ 0.567\\ 0.625\\ 0.712\\ 0.047\end{array}$         | $\begin{array}{c} 0.080\\ 0.140\\ 0.190\\ 0.250\\ 0.204\end{array}$         | 0.252<br>0.417<br>0.501<br>0.563<br>0.655                                   | $\begin{array}{c} 0.058\\ 0.098\\ 0.140\\ 0.189\\ 0.265\end{array}$               | $\begin{array}{c} 0.362\\ 0.364\\ 0.429\\ 0.474\\ 0.542\end{array}$               |
| F.        | served Va          | y2             | 0.899<br>0.829 | 0.729<br>0.744<br>0.693                  | $\begin{array}{c} 0.644 \\ 0.542 \\ 0.461 \\ 0.385 \\ 0.332 \end{array}$    | 0.263<br>0.175<br>0.081<br>0.815<br>0.760                                   | 0.712<br>0.638<br>0.602<br>0.535<br>0.443                                   | 0.377<br>0.253<br>0.178<br>0.064<br>0.740                                   | 0.723<br>0.645<br>0.585<br>0.518<br>0.578                                   | $\begin{array}{c} 0.511\\ 0.311\\ 0.236\\ 0.148\\ 0.090\end{array}$         | $\begin{array}{c} 0.695\\ 0.612\\ 0.551\\ 0.488\\ 0.419\end{array}$               | $\begin{array}{c} 0.352\\ 0.298\\ 0.232\\ 0.145\\ 0.076\end{array}$               |
|           | q0                 | Å              | 0.056<br>0.078 | 0.092<br>0.071<br>0.068                  | $\begin{array}{c} 0.081\\ 0.079\\ 0.108\\ 0.108\\ 0.102\\ 0.102\end{array}$ | 0.095<br>0.103<br>0.103<br>0.133<br>0.133                                   | $\begin{array}{c} 0.149\\ 0.170\\ 0.163\\ 0.156\\ 0.186\\ 0.186\end{array}$ | $\begin{array}{c} 0.205\\ 0.180\\ 0.197\\ 0.224\\ 0.213\end{array}$         | $\begin{array}{c} 0.197\\ 0.215\\ 0.225\\ 0.232\\ 0.218\\ 0.218\end{array}$ | $\begin{array}{c} 0.237\\ 0.272\\ 0.263\\ 0.289\\ 0.255\end{array}$         | 0.247<br>0.290<br>0.309<br>0.323<br>0.316                                         | 0.286<br>0.338<br>0.339<br>0.381<br>0.381                                         |
|           | 2                  | x3             | 0.078<br>0.154 | 0.252<br>0.280<br>0.345                  | 0.385<br>0.493<br>0.544<br>0.619<br>0.680                                   | $\begin{array}{c} 0.742 \\ 0.819 \\ 0.892 \\ 0.086 \\ 0.183 \end{array}$    | $\begin{array}{c} 0.206\\ 0.271\\ 0.336\\ 0.413\\ 0.485\end{array}$         | $\begin{array}{c} 0.530\\ 0.681\\ 0.743\\ 0.822\\ 0.071\\ \end{array}$      | $\begin{array}{c} 0.122\\ 0.200\\ 0.262\\ 0.338\\ 0.279\end{array}$         | $\begin{array}{c} 0.342 \\ 0.533 \\ 0.625 \\ 0.692 \\ 0.784 \end{array}$    | $\begin{array}{c} 0.082\\ 0.136\\ 0.192\\ 0.258\\ 0.349\end{array}$               | $\begin{array}{c} 0.469\\ 0.472\\ 0.551\\ 0.609\\ 0.698\end{array}$               |
|           | unid Com           |                | 0.844<br>0.756 | 0.655<br>0.647<br>0.595                  | $\begin{array}{c} 0.546\\ 0.450\\ 0.381\\ 0.312\\ 0.264\end{array}$         | 0.206<br>0.136<br>0.063<br>0.760<br>0.692                                   | 0.646<br>0.576<br>0.532<br>0.466<br>0.379                                   | 0.331<br>0.214<br>0.151<br>0.070<br>0.703                                   | $\begin{array}{c} 0.670\\ 0.600\\ 0.542\\ 0.476\\ 0.531\end{array}$         | $\begin{array}{c} 0.468\\ 0.285\\ 0.213\\ 0.136\\ 0.080\end{array}$         | $\begin{array}{c} 0.665\\ 0.591\\ 0.535\\ 0.476\\ 0.405\end{array}$               | $\begin{array}{c} 0.330\\ 0.292\\ 0.225\\ 0.147\\ 0.076\end{array}$               |
|           | 7; I               |                | 0.078<br>0.090 | 0.093<br>0.073<br>0.060                  | $\begin{array}{c} 0.069\\ 0.057\\ 0.075\\ 0.069\\ 0.056\end{array}$         | $\begin{array}{c} 0.052\\ 0.045\\ 0.045\\ 0.154\\ 0.125\end{array}$         | $\begin{array}{c} 0.148\\ 0.153\\ 0.132\\ 0.121\\ 0.136\end{array}$         | $\begin{array}{c} 0.139\\ 0.105\\ 0.106\\ 0.108\\ 0.226\end{array}$         | $\begin{array}{c} 0.208\\ 0.200\\ 0.196\\ 0.186\\ 0.190\end{array}$         | $\begin{array}{c} 0.190\\ 0.182\\ 0.162\\ 0.172\\ 0.172\\ 0.136\end{array}$ | 0.253<br>0.273<br>0.273<br>0.266<br>0.266                                         | $\begin{array}{c} 0.201\\ 0.236\\ 0.224\\ 0.244\\ 0.226\end{array}$               |

| $1.141 \\ 1.128 \\ 1.113 \\ 1.107 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.101 \\ 1.10$ | $\begin{array}{c} 1.096\\ 1.055\\ 1.073\\ 1.073\\ 1.064\\ 1.171\end{array}$ | $\begin{array}{c} 1.167\\ 1.161\\ 1.137\\ 1.114\\ 1.114\\ 1.091 \end{array}$ | $\begin{array}{c} 1.105\\ 1.088\\ 1.211\\ 1.194\\ 1.183\end{array}$         | $\begin{array}{c} 1.161 \\ 1.151 \\ 1.136 \\ 1.111 \\ 1.111 \\ 1.237 \end{array}$ | $\begin{array}{c} 1.215\\ 1.203\\ 1.186\\ 1.170\\ 1.146\end{array}$         | $\begin{array}{c} 1.262\\ 1.244\\ 1.227\\ 1.199\\ 1.178\end{array}$         | $\begin{array}{c} 1.288\\ 1.264\\ 1.325\\ 1.325\\ 1.221\\ 1.307\end{array}$ | $\begin{array}{c} 1.287\\ 1.258\\ 1.325\\ 1.325\\ 1.332\\ 1.332\end{array}$ | 1.055 |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|--------------------|
| $\begin{array}{c} 0.843\\ 0.865\\ 0.860\\ 0.814\\ 0.813\\ 0.813\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.785 \\ 0.743 \\ 0.732 \\ 0.708 \\ 0.861 \end{array}$    | 0.844<br>0.831<br>0.812<br>0.809<br>0.772                                    | 0.722<br>0.675<br>0.838<br>0.815<br>0.787                                   | 0.756<br>0.731<br>0.693<br>0.677<br>0.805                                         | 0.781<br>0.755<br>0.751<br>0.724<br>0.656                                   | 0.766<br>0.747<br>0.717<br>0.719<br>0.650                                   | $\begin{array}{c} 0.748 \\ 0.711 \\ 0.674 \\ 0.640 \\ 0.708 \end{array}$    | $\begin{array}{c} 0.658\\ 0.640\\ 0.669\\ 0.627\\ 0.626\end{array}$         | 0.827 |                    |
| $\begin{array}{c} 0.802\\ 0.844\\ 0.854\\ 0.888\\ 0.920\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.956<br>0.976<br>0.978<br>0.961<br>0.845                                   | $\begin{array}{c} 0.865\\ 0.894\\ 0.908\\ 0.921\\ 0.982\end{array}$          | 0.989<br>0.976<br>0.944<br>0.895<br>0.930                                   | $\begin{array}{c} 0.953\\ 0.974\\ 1.001\\ 1.022\\ 0.903\end{array}$               | $\begin{array}{c} 0.929\\ 0.945\\ 0.951\\ 0.991\\ 1.010\end{array}$         | $\begin{array}{c} 0.932 \\ 0.948 \\ 0.971 \\ 0.987 \\ 1.003 \end{array}$    | 0.956<br>0.973<br>0.987<br>0.998<br>0.975                                   | 0.988<br>0.996<br>0.989<br>0.997<br>0.997                                   | 0.933 |                    |
| $\begin{array}{c} 1.139\\ 1.128\\ 1.146\\ 1.119\\ 1.136\\ 1.136\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.120\\ 1.112\\ 1.112\\ 1.088\\ 1.079\\ 1.180\end{array}$ | $\begin{array}{c} 1.180\\ 1.163\\ 1.155\\ 1.130\\ 1.144\end{array}$          | $\begin{array}{c} 1.114\\ 1.106\\ 1.187\\ 1.196\\ 1.254\end{array}$         | $\begin{array}{c} 1.171 \\ 1.152 \\ 1.149 \\ 1.119 \\ 1.230 \end{array}$          | $\begin{array}{c} 1.218\\ 1.100\\ 1.204\\ 1.177\\ 1.151\end{array}$         | 1.284<br>1.285<br>1.216<br>1.186<br>1.177                                   | $\begin{array}{c} 1.306\\ 1.268\\ 1.240\\ 1.213\\ 1.304\end{array}$         | $\begin{array}{c} 1.275\\ 1.251\\ 1.318\\ 1.318\\ 1.296\\ 1.313\end{array}$ | 1.072 |                    |
| $\begin{array}{c} 0.868\\ 0.848\\ 0.840\\ 0.821\\ 0.798\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.776\\ 0.751\\ 0.743\\ 0.743\\ 0.705\\ 0.837\end{array}$ | 0.821<br>0.802<br>0.787<br>0.789<br>0.731                                    | 0.721<br>0.707<br>0.793<br>0.796<br>0.724                                   | 0.741<br>0.723<br>0.714<br>0.676<br>0.788                                         | 0.758<br>0.740<br>0.732<br>0.660<br>0.660                                   | 0.758<br>0.735<br>0.703<br>0.703<br>0.675<br>0.651                          | 0.716<br>0.699<br>0.681<br>0.681<br>0.688                                   | 0.674<br>0.624<br>0.671<br>0.631<br>0.643                                   | 0.813 |                    |
| $\begin{array}{c} 0.796\\ 0.964\\ 0.988\\ 1.032\\ 0.913\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.958\\ 0.984\\ 1.032\\ 1.052\\ 0.839\end{array}$         | $\begin{array}{c} 0.856\\ 0.893\\ 0.894\\ 0.910\\ 0.979\end{array}$          | $\begin{array}{c} 1.025\\ 1.047\\ 0.886\\ 0.886\\ 0.941\end{array}$         | $\begin{array}{c} 0.956\\ 0.976\\ 1.006\\ 1.048\\ 0.892\end{array}$               | $\begin{array}{c} 0.929\\ 0.944\\ 0.957\\ 0.995\\ 1.026\end{array}$         | $\begin{array}{c} 0.927\\ 0.943\\ 0.969\\ 0.995\\ 1.012 \end{array}$        | $\begin{array}{c} 0.945\\ 0.972\\ 0.986\\ 1.002\\ 0.972\end{array}$         | 0.978<br>0.993<br>0.977<br>0.989<br>0.988                                   | 0.924 |                    |
| 66.0<br>65.9<br>66.3<br>67.3<br>67.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.8<br>69.1<br>69.4<br>70.0<br>64.9                                        | 65.2<br>65.3<br>66.2<br>67.0<br>66.7                                         | 67.3<br>68.2<br>63.0<br>64.7<br>64.9                                        | 65.5<br>65.6<br>65.6<br>66.3<br>63.8                                              | 64.1<br>64.3<br>64.7<br>64.3<br>64.6                                        | 63.1<br>63.3<br>63.1<br>63.3<br>63.4                                        | 62.0<br>62.1<br>61.5<br>61.9<br>61.0                                        | 60.8<br>60.8<br>59.7<br>58.7                                                | 69.4  |                    |
| 65.2<br>66.0<br>66.5<br>66.9<br>67.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.5<br>68.6<br>68.2<br>68.1<br>68.1<br>65.1                                | 65.7<br>65.6<br>66.2<br>66.3<br>66.3                                         | 66.6<br>66.6<br>64.4<br>64.8<br>64.9                                        | 65.3<br>65.3<br>65.2<br>63.9                                                      | 64.1<br>64.2<br>64.1<br>64.2<br>64.2                                        | 62.9<br>63.1<br>63.0<br>63.2<br>63.1                                        | 62.0<br>62.0<br>61.7<br>61.7<br>60.9                                        | 60.7<br>60.7<br>59.7<br>59.7<br>58.6                                        | 69.1  |                    |
| 65.5<br>66.1<br>66.6<br>67.1<br>67.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.7<br>68.3<br>68.4<br>68.6<br>65.4                                        | 65.7<br>65.8<br>66.7<br>67.3<br>66.6                                         | 66.6<br>66.8<br>64.8<br>65.2<br>65.2                                        | 65.5<br>65.6<br>65.3<br>65.3<br>64.3                                              | 64.4<br>64.5<br>64.7<br>64.3<br>64.3                                        | 63.3<br>63.4<br>63.4<br>63.4<br>63.2                                        | 62.5<br>62.4<br>61.8<br>61.8<br>61.2                                        | $\begin{array}{c} 61.0\\ 60.9\\ 60.1\\ 59.9\\ 58.9\end{array}$              | 69.5  |                    |
| $\begin{array}{c} 0.050\\ 0.116\\ 0.148\\ 0.200\\ 0.244\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.300\\ 0.365\\ 0.421\\ 0.481\\ 0.065\end{array}$         | $\begin{array}{c} 0.095\\ 0.138\\ 0.185\\ 0.185\\ 0.231\\ 0.288\end{array}$  | $\begin{array}{c} 0.356\\ 0.417\\ 0.042\\ 0.097\\ 0.145\end{array}$         | $\begin{array}{c} 0.209\\ 0.249\\ 0.299\\ 0.357\\ 0.053\end{array}$               | $\begin{array}{c} 0.110\\ 0.146\\ 0.174\\ 0.245\\ 0.294\end{array}$         | $\begin{array}{c} 0.054 \\ 0.096 \\ 0.146 \\ 0.200 \\ 0.247 \end{array}$    | $\begin{array}{c} 0.049\\ 0.100\\ 0.142\\ 0.186\\ 0.047\end{array}$         | $\begin{array}{c} 0.090\\ 0.134\\ 0.040\\ 0.099\\ 0.043\end{array}$         | 0.335 |                    |
| $\begin{array}{c} 0.586\\ 0.512\\ 0.494\\ 0.419\\ 0.357\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.282<br>0.206<br>0.151<br>0.074<br>0.509                                   | $\begin{array}{c} 0.463\\ 0.398\\ 0.368\\ 0.368\\ 0.349\\ 0.199\end{array}$  | $\begin{array}{c} 0.124\\ 0.061\\ 0.437\\ 0.391\\ 0.318\end{array}$         | $\begin{array}{c} 0.245\\ 0.189\\ 0.113\\ 0.073\\ 0.373\end{array}$               | $\begin{array}{c} 0.305\\ 0.254\\ 0.240\\ 0.124\\ 0.060\end{array}$         | $\begin{array}{c} 0.291\\ 0.244\\ 0.170\\ 0.121\\ 0.057\end{array}$         | $\begin{array}{c} 0.226\\ 0.161\\ 0.101\\ 0.050\\ 0.156\end{array}$         | $\begin{array}{c} 0.095\\ 0.053\\ 0.097\\ 0.039\\ 0.042\end{array}$         | 0.372 | ethod (13)         |
| $\begin{array}{c} 0.364 \\ 0.372 \\ 0.358 \\ 0.381 \\ 0.399 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.418 \\ 0.429 \\ 0.428 \\ 0.445 \\ 0.426 \end{array}$    | $\begin{array}{c} 0.442 \\ 0.464 \\ 0.447 \\ 0.420 \\ 0.513 \end{array}$     | $\begin{array}{c} 0.520\\ 0.522\\ 0.521\\ 0.512\\ 0.537\\ 0.537\end{array}$ | $\begin{array}{c} 0.546\\ 0.562\\ 0.588\\ 0.570\\ 0.574\end{array}$               | 0.585<br>0.600<br>0.586<br>0.586<br>0.631<br>0.646                          | $\begin{array}{c} 0.655\\ 0.660\\ 0.684\\ 0.679\\ 0.696\end{array}$         | $\begin{array}{c} 0.725 \\ 0.739 \\ 0.757 \\ 0.764 \\ 0.797 \end{array}$    | $\begin{array}{c} 0.815\\ 0.813\\ 0.863\\ 0.862\\ 0.915\end{array}$         | 0.293 | agata's m          |
| $\begin{array}{c} 0.051 \\ 0.127 \\ 0.160 \\ 0.212 \\ 0.260 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.316\\ 0.383\\ 0.430\\ 0.482\\ 0.072\end{array}$         | $\begin{array}{c} 0.104 \\ 0.151 \\ 0.200 \\ 0.247 \\ 0.313 \end{array}$     | $\begin{array}{c} 0.370\\ 0.423\\ 0.049\\ 0.107\\ 0.158\end{array}$         | $\begin{array}{c} 0.223\\ 0.265\\ 0.315\\ 0.376\\ 0.058\end{array}$               | $\begin{array}{c} 0.120\\ 0.159\\ 0.188\\ 0.188\\ 0.261\\ 0.312\end{array}$ | $\begin{array}{c} 0.059\\ 0.105\\ 0.157\\ 0.157\\ 0.216\\ 0.262\end{array}$ | $\begin{array}{c} 0.054 \\ 0.108 \\ 0.146 \\ 0.200 \\ 0.051 \end{array}$    | 0.098<br>0.144<br>0.044<br>0.106<br>0.047                                   | 0.347 | ttions. ' N        |
| $\begin{array}{c} 0.582 \\ 0.493 \\ 0.475 \\ 0.410 \\ 0.343 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.272\\ 0.201\\ 0.147\\ 0.068\\ 0.489\end{array}$         | 0.443<br>0.376<br>0.351<br>0.335<br>0.335<br>0.184                           | $\begin{array}{c} 0.118\\ 0.059\\ 0.436\\ 0.372\\ 0.303\end{array}$         | $\begin{array}{c} 0.233\\ 0.181\\ 0.110\\ 0.072\\ 0.355\end{array}$               | $\begin{array}{c} 0.289\\ 0.240\\ 0.228\\ 0.115\\ 0.058\end{array}$         | $\begin{array}{c} 0.276\\ 0.231\\ 0.160\\ 0.110\\ 0.055\end{array}$         | $\begin{array}{c} 0.209\\ 0.151\\ 0.095\\ 0.047\\ 0.144\end{array}$         | $\begin{array}{c} 0.089\\ 0.050\\ 0.089\\ 0.037\\ 0.038\end{array}$         | 0.364 | ter's equ          |
| 0.367<br>0.380<br>0.365<br>0.378<br>0.378<br>0.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.412 \\ 0.416 \\ 0.423 \\ 0.450 \\ 0.439 \end{array}$    | $\begin{array}{c} 0.453\\ 0.473\\ 0.449\\ 0.418\\ 0.503\end{array}$          | $\begin{array}{c} 0.512 \\ 0.518 \\ 0.515 \\ 0.521 \\ 0.539 \end{array}$    | $\begin{array}{c} 0.544 \\ 0.554 \\ 0.575 \\ 0.552 \\ 0.587 \end{array}$          | $\begin{array}{c} 0.591 \\ 0.601 \\ 0.584 \\ 0.624 \\ 0.630 \end{array}$    | 0.665<br>0.664<br>0.683<br>0.683<br>0.674<br>0.683                          | $\begin{array}{c} 0.737\\ 0.741\\ 0.759\\ 0.753\\ 0.805\end{array}$         | 0.813<br>0.806<br>0.867<br>0.857<br>0.857                                   | 0.289 | and Kist           |
| $\begin{array}{c} 0.049\\ 0.117\\ 0.153\\ 0.201\\ 0.252\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.305<br>0.375<br>0.413<br>0.466<br>0.066                                   | $\begin{array}{c} 0.097\\ 0.140\\ 0.191\\ 0.237\\ 0.301\end{array}$          | $\begin{array}{c} 0.351 \\ 0.404 \\ 0.044 \\ 0.099 \\ 0.155 \end{array}$    | $\begin{array}{c} 0.211 \\ 0.249 \\ 0.299 \\ 0.354 \\ 0.053 \end{array}$          | $\begin{array}{c} 0.111\\ 0.147\\ 0.177\\ 0.246\\ 0.292\end{array}$         | $\begin{array}{c} 0.055\\ 0.100\\ 0.145\\ 0.199\\ 0.245\end{array}$         | $\begin{array}{c} 0.050\\ 0.101\\ 0.134\\ 0.185\\ 0.047\end{array}$         | $\begin{array}{c} 0.090\\ 0.134\\ 0.041\\ 0.043\\ 0.043\end{array}$         | 0.342 | l Redlich          |
| $\begin{array}{c} 0.595\\ 0.508\\ 0.487\\ 0.421\\ 0.351\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.277\\ 0.203\\ 0.149\\ 0.068\\ 0.504\end{array}$         | $\begin{array}{c} 0.458\\ 0.389\\ 0.362\\ 0.344\\ 0.188\\ 0.188\end{array}$  | $\begin{array}{c} 0.121\\ 0.061\\ 0.438\\ 0.387\\ 0.295\end{array}$         | $\begin{array}{c} 0.240\\ 0.187\\ 0.115\\ 0.115\\ 0.071\\ 0.371\end{array}$       | $\begin{array}{c} 0.299\\ 0.250\\ 0.234\\ 0.120\\ 0.059\end{array}$         | $\begin{array}{c} 0.290\\ 0.241\\ 0.168\\ 0.114\\ 0.057\end{array}$         | $\begin{array}{c} 0.220\\ 0.161\\ 0.103\\ 0.050\\ 0.153\end{array}$         | $\begin{array}{c} 0.098\\ 0.052\\ 0.098\\ 0.040\\ 0.043\end{array}$         | 0.367 | Modified           |
| 0.356<br>0.375<br>0.360<br>0.378<br>0.378<br>0.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.418\\ 0.422\\ 0.438\\ 0.466\\ 0.430\\ 0.430\end{array}$ | 0.445<br>0.471<br>0.447<br>0.447<br>0.419<br>0.511                           | $\begin{array}{c} 0.528\\ 0.535\\ 0.518\\ 0.514\\ 0.514\\ 0.550\end{array}$ | $\begin{array}{c} 0.549\\ 0.564\\ 0.586\\ 0.575\\ 0.576\\ 0.576\end{array}$       | 0.590<br>0.603<br>0.589<br>0.589<br>0.634<br>0.649                          | 0.655<br>0.659<br>0.687<br>0.687<br>0.698                                   | 0.730<br>0.738<br>0.763<br>0.765<br>0.765<br>0.765                          | $\begin{array}{c} 0.812\\ 0.814\\ 0.861\\ 0.860\\ 0.914\end{array}$         | 0.291 | , ( <i>21</i> ) bo |
| $\begin{array}{c} 0.069\\ 0.163\\ 0.207\\ 0.273\\ 0.334\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.406\\ 0.492\\ 0.552\\ 0.624\\ 0.090\end{array}$         | $\begin{array}{c} 0.131\\ 0.191\\ 0.255\\ 0.317\\ 0.407\end{array}$          | $\begin{array}{c} 0.487\\ 0.561\\ 0.061\\ 0.134\\ 0.200\end{array}$         | $\begin{array}{c} 0.289\\ 0.345\\ 0.420\\ 0.502\\ 0.072\end{array}$               | $\begin{array}{c} 0.152\\ 0.203\\ 0.242\\ 0.349\\ 0.425\end{array}$         | $\begin{array}{c} 0.074 \\ 0.134 \\ 0.206 \\ 0.289 \\ 0.361 \end{array}$    | 0.068<br>0.142<br>0.197<br>0.278<br>0.067                                   | $\begin{array}{c} 0.132\\ 0.201\\ 0.060\\ 0.150\\ 0.066\end{array}$         | 0.447 | g's metho          |
| $\begin{array}{c} 0.596\\ 0.511\\ 0.487\\ 0.424\\ 0.360\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.290\\ 0.215\\ 0.159\\ 0.159\\ 0.076\\ 0.525\end{array}$ | 0.482<br>0.418<br>0.385<br>0.358<br>0.216                                    | $\begin{array}{c} 0.141 \\ 0.072 \\ 0.491 \\ 0.427 \\ 0.358 \end{array}$    | $\begin{array}{c} 0.281\\ 0.224\\ 0.141\\ 0.091\\ 0.425\end{array}$               | 0.355<br>0.303<br>0.285<br>0.155<br>0.081                                   | $\begin{array}{c} 0.357\\ 0.305\\ 0.223\\ 0.157\\ 0.082\end{array}$         | $\begin{array}{c} 0.294 \\ 0.221 \\ 0.148 \\ 0.076 \\ 0.222 \end{array}$    | 0.146<br>0.084<br>0.151<br>0.066<br>0.066                                   | 0.346 | , and Tin          |
| 0.335<br>0.326<br>0.306<br>0.303<br>0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.304 \\ 0.293 \\ 0.289 \\ 0.300 \\ 0.385 \end{array}$    | 0.387<br>0.391<br>0.360<br>0.325<br>0.377                                    | $\begin{array}{c} 0.372 \\ 0.367 \\ 0.448 \\ 0.439 \\ 0.442 \end{array}$    | $\begin{array}{c} 0.430\\ 0.431\\ 0.439\\ 0.439\\ 0.407\\ 0.503\end{array}$       | 0.493<br>0.494<br>0.473<br>0.496<br>0.494                                   | $\begin{array}{c} 0.569\\ 0.561\\ 0.571\\ 0.554\\ 0.557\end{array}$         | 0.638<br>0.637<br>0.655<br>0.655<br>0.646<br>0.711                          | $\begin{array}{c} 0.722\\ 0.715\\ 0.789\\ 0.784\\ 0.862\end{array}$         | 0.207 | 'Lu, Li            |

difference between experimental and calculated temperatures is 0.4° C.

Algebraic Method. Another method which correlates the vapor-liquid equilibria of binary systems and can predict ternary vapor-liquid equilibria from binary data treats algebraic equations. Such as algebraic equation is expressed for binary systems as follows (12, 16).

$$\frac{y_i}{y_j} = \frac{x_i}{x_j} \left( \frac{x_i + x_j a_{ij}}{x_j b_{ij} + x_i c_{ij}} \right)$$
(13)

The boiling points of the binary systems,  $T_m$ , are calculated according to the equation recently proposed by the author (13).

$$T_m = T_i y_{ii} + T_j y_{jj} + T_{ij} (y_{ij} + y_{ji})$$
(14)

where  $a_{ii}$ ,  $b_{ii}$ ,  $c_{ii}$ , and  $T_{ii}$  are constants determined from experimental data and given in Table VIII in which the value of  $T_{23}$  is not equal to the one listed in the previous article (13), because the present boiling point data for the chloroform-benzene system are a little lower than those of Reinders and de Minjer (17), y's are variables defined by the following equations

$$y_{ii} = y_i \cdot x_i / (x_i + x_j a_{ii}) \tag{15}$$

$$y_{ij} = y_i \cdot x_j a_{ij} / (x_i + x_j a_{ij})$$
 (16)

$$\mathbf{y}_{ij} = \mathbf{y}_j \cdot \mathbf{x}_j \mathbf{b}_{ij} / (\mathbf{x}_j \mathbf{b}_{ij} + \mathbf{x}_i \mathbf{c}_{ij}) \tag{17}$$

$$y_{ii} = y_i \cdot x_i c_{ij} / (x_j b_{ij} + x_i c_{ij})$$
(18)

If a ternary system does not deviate too much from the condition.

$$b_{12} \cdot b_{23} \cdot b_{31} = 1 \tag{19}$$

the vapor compositions of the system are obtainable from binary constants using the equation recommended by Lu, Li, and Ting (12).

$$y_{1}:y_{2}:y_{3} = (b_{31}/b_{12})^{1/3} x_{1}(x_{1} + x_{2}a_{12} + x_{3}c_{31}/b_{31})$$

$$(b_{12}/b_{23})^{1/3} x_{2}(x_{2} + x_{3}a_{23} + x_{1}c_{12}/b_{12})$$

$$(b_{23}/b_{31})^{1/3} x_{3}(x_{3} + x_{1}a_{31} + x_{2}c_{23}/b_{23})$$
(20)

Analogous equations were empirically proposed by Hála (7). Equation 20 is more flexible for practical use than Hála's equation, because the former may satisfy the restriction of Equation 19 approximately, but the latter must fulfil it strictly. The boiling points of the system,  $T_m$ , are calculated by using Equation 20 in the same manner as those of the binary systems.

$$T_{m} = T_{1}y_{11} + T_{2}y_{22} + T_{3}y_{33} + T_{12}(y_{12} + y_{21}) + T_{23}(y_{23} + y_{32}) + T_{13}(y_{13} + y_{31})$$
(21)

where  $y_{11}$  is given by the equation,

$$v_{11} = y_1 x_1 / (x_1 + x_2 a_{12} + x_3 c_{31} / b_{31})$$
(22)

and the other y's are defined similarly.

For the present ternary system  $b_{12} \cdot b_{23} \cdot b_{31} = 1.259$ , so the above equations are applicable. Calculated values of vapor compositions and boiling points are also given in Table VII. Average deviation of the calculated from the observed vapor compositions is 0.006 for methyl acetate, 0.008 for

# Table VIII. Primary Information Used for Prediction of Ternary Vapor-Liquid Equilibria

| $(\mathbf{b}_{12}, \mathbf{b}_{23}, \mathbf{b}_{31} = 1.259)$ |                     |             |                                                 |          |  |  |
|---------------------------------------------------------------|---------------------|-------------|-------------------------------------------------|----------|--|--|
| System                                                        | $oldsymbol{a}_{ij}$ | $m{b}_{ij}$ | <b>c</b> <sub><i>i</i><sub><i>j</i></sub></sub> | $T_{ij}$ |  |  |
| Methyl acetate(1)-chloroform(2)                               | 0.255               | 0.534       | 0.497                                           | 348.1    |  |  |
| Chloroform(2)-benzene(3)                                      | 0.960               | 0.653       | 0.500                                           | 347.1    |  |  |
| Benzene(3)-methyl acetate(1)                                  | 2.271               | 3.610       | 2.744                                           | 338.7    |  |  |

chloroform, and 0.008 for benzene. The average deviation of the calculated boiling temperatures from the experimental values is 0.2° C.

Conclusions. The two correlation methods give comable results on the predicted vapor compositions. The analytical equations expressing  $\ln \gamma$  involve a lengthy trial and error method for the prediction of boiling temperatures and vapor compositions, but the algebraic method allows one to handle such problems in a straight forward manner, without involving trial calculations. The ternary predicted boiling temperatures by the latter agree better with the experimental data than those obtained by the trial error method. Apparently further investigations will be needed for making a inclusive comparison of their merits. No ternary azeotrope was found.

#### ACKNOWLEDGMENT

The author thanks Fumitake Yoshida for his encouragement and support in this study.

#### NOMENCLATURE

| $a_{12}, a_{23}, a_{31}$   |   | 1                                                     |
|----------------------------|---|-------------------------------------------------------|
| $b_{12}, b_{23}, b_{31}$   |   |                                                       |
| $c_{12}, c_{23}, c_{31}$   | ~ | constants defined by Equations 13 to 22               |
| a, b, c, d,                |   |                                                       |
| B, C, D                    | ≈ | modified Redlich-kister binary constants defined      |
|                            |   | by Equations 4 to 8                                   |
| $B, C_1, C_2, C_3$         |   |                                                       |
| $b, c_1, c_2, c_3$         | × | modified Redlich-Kister ternary constants defined     |
|                            |   | by Equations 10 to 12                                 |
| $G^{\scriptscriptstyle E}$ | ~ | excess free energy per mole of solution               |
| $\Delta H$                 | = | integral heat of mixing per mole of solution          |
| P                          | = | barometric pressure, mm. of mercury                   |
| $P_i$                      | ≈ | vapor pressure of component <i>i</i> , mm. of mercury |
| R                          | 2 | gas contants                                          |
| $t_c$                      | = | corrected temperature, ° C.                           |
| $t_o$                      | = | observed temperature, ° C.                            |
| T                          | ≈ | boiling temperature, ° K.                             |
| $T_{12}, T_{23}, T_{13}$   | ≈ | constants defined by Equations 14 and 21              |
| $\mathbf{x}_i$             | = | mole fraction of liquid phase of component $i$        |
| ${\mathcal Y}_i$           | = | mole fraction of vapor phase of component $i$         |
| $\boldsymbol{\gamma}_i$    | = | activity coefficient of component $i$                 |
| π                          | = | total pressure, mm. of mercury                        |

#### Subscripts

1, 2, 3, i, j =components m = mixture

#### LITERATURE CITED

- Brown, I., Fock, W., Australian J. Chem. 8, 361 (1955). (1)
- Bushmakin, I.N., Kish, I.N., Zhur, Priklad. Khim. 30, 200 (2)(1957)
- (3)Chao, K.C., Ind. Eng. Chem. 51, 93 (1959).
- Chao, K.C., Hougen, O.A., Chem. Eng. Sci. 7, 246 (1958). Edwards, B.S., Hashmall, F., Gilmont, R., Othmer, D.F., (4)(5)
- Ind. Eng. Chem. 46, 194 (1954). Griswold, J., Buford, C.B., Ibid., 41, 2347 (1949). (6)
- Hála, E., Collection Czechoslov. Chem. Communs. 24, 2453 (7)(1959).
- (8)
- (9)
- Hurd, C.D., Strong, J.S., Anal. Chem. 23, 542 (1951).
  Ibl, N.V., Dodge, B.F., Chem. Eng. Sci. 2, 120 (1953).
  Karr, A.E., Bowes, W.M., Scheibel, E.G., Anal. Chem. 23, (10)459 (1951).
- Lange, N.A., ed. Handbook of Chemistry, 9th ed., p. 1424, (11)Handbook Pbl., Sandusky, Ohio, 1956. Lu, B.C.-Y., Li, J.C.M., Ting, T.-W., Ind. Eng. Chem. 51,
- (12)219 (1959).
- (13)Nagata, I., J. CHEM. ENG. DATA 6, 586 (1961).
- (14)Naphtali, L.M., Chao, K.C., Ind. Eng. Chem. 51, 1318 (1959).
- Perry, J.H., ed. Chemical Engineers' Handbook, p. 293, McGraw-Hill, New York, 1950. (15)
- Prahl, W.H., Ind. Eng. Chem. 43, 1767 (1951). (16)
- Reinders, W., de Minjer, C.H., Rec. trav. chim. 59, 369 (17)(1940).
- (18)Timmermans, J., "Physico-chemical Constants of Pure Organic Compounds," Elsevier, New York, 1950.
- RECEIVED for review September 6, 1961. Accepted January 2, 1962.